Wednesday, May 06, 2015

Dyson 360 Eye and Baidu Deep Learning at the Embedded Vision Summit in Santa Clara

Bringing Computer Vision to the Consumer

Mike Aldred
Electronics Lead, Dyson Ltd

While vision has been a research priority for decades, the results have often remained out of reach of the consumer. Huge strides have been made, but the final, and perhaps toughest, hurdle is how to integrate vision into real world products. It’s a long road from concept to finished machine, and to succeed, companies need clear objectives, a robust test plan, and the ability to adapt when those fail. 

The Dyson 360 Eye robot vacuum cleaner uses computer vision as its primary localization technology. 10 years in the making, it was taken from bleeding edge academic research to a robust, reliable and manufacturable solution by Mike Aldred and his team at Dyson. 

Mike Aldred’s keynote at next week's Embedded Vision Summit (May 12th in Santa Clara) will chart some of the high and lows of the project, the challenges of bridging between academia and business, and how to use a diverse team to take an idea from the lab into real homes.

Enabling Ubiquitous Visual Intelligence Through Deep Learning

Ren Wu 
Distinguished Scientist, Baidu Institute of Deep Learning

Deep learning techniques have been making headlines lately in computer vision research. Using techniques inspired by the human brain, deep learning employs massive replication of simple algorithms which learn to distinguish objects through training on vast numbers of examples. Neural networks trained in this way are gaining the ability to recognize objects as accurately as humans. Some experts believe that deep learning will transform the field of vision, enabling the widespread deployment of visual intelligence in many types of systems and applications. But there are many practical problems to be solved before this goal can be reached. For example, how can we create the massive sets of real-world images required to train neural networks? And given their massive computational requirements, how can we deploy neural networks into applications like mobile and wearable devices with tight cost and power consumption constraints? 

Ren Wu’s morning keynote at next week's Embedded Vision Summit (May 12th in Santa Clara) will share an insider’s perspective on these and other critical questions related to the practical use of neural networks for vision, based on the pioneering work being conducted by his team at Baidu.

Vision-as-a-Service: Democratization of Vision for Consumers and Businesses

Herman Yau
Co-founder and CEO, Tend

Hundreds of millions of video cameras are installed around the world—in businesses, homes, and public spaces—but most of them provide limited insights. Installing new, more intelligent cameras requires massive deployments with long time-to-market cycles. Computer vision enables us to extract meaning from video streams generated by existing cameras, creating value for consumers, businesses, and communities in the form of improved safety, quality, security, and health. But how can we bring computer vision to millions of deployed cameras? The answer is through “Vision-as-a-Service” (VaaS), a new business model that leverages the cloud to apply state-of-the-art computer vision techniques to video streams captured by inexpensive cameras. Centralizing vision processing in the cloud offers some compelling advantages, such as the ability to quickly deploy sophisticated new features without requiring upgrades of installed camera hardware. It also brings some tough challenges, such as scaling to bring intelligence to millions of cameras. 

Herman Yau's talk at next week's Embedded Vision Summit (May 12th in Santa Clara) will explain the architecture and business model behind VaaS, show how it is being deployed in a wide range of real-world use cases, and highlight some of the key challenges and how they can be overcome.

Embedded Vision Summit on May 12th, 2015

There will be many more great presentations at the upcoming Embedded Vision Summit.  From the range of topics, it looks like any startup with interest in computer vision will be able to benefit from attending. The entire day is filled with talks by great presenters (Gary Bradski will talk about the latest developments in OpenCV). You can see the list of speakers: Embedded Vision Summit 2015 List of speakers or the day's agenda Embedded Vision Summit 2015 Agenda.

Embedded Vision Summit 2015 Registration (249$ for the one day event + food)

Demos during lunch: The Technology Showcase at the Embedded Vision Summit will highlight demonstrations of technology for computer vision-based applications and systems from the following companies.

The vision topics covered will be: Deep Learning, CNNs, Business, Markets, Libraries, Standards, APIs, 3D Vision, and Processors. I will be there with my team, together with some computer vision guys from KnitHealth, Inc, a new SF-based Health Vision Company. If you're interested in meeting with us, let's chat at the Vision Summit.

What kind of startups and companies should attend? Definitely robotics. Definitely vision sensors. Definitely those interested in deep learning hardware implementations. Seems like even half of the software engineers at Google could benefit from learning about their favorite deep learning algorithms being optimized for hardware. 

Tuesday, May 05, 2015

Deep Learning vs Big Data: Who owns what?

In order to learn anything useful, large-scale multi-layer deep neural networks (aka Deep Learning systems) require a large amount of labeled data. There is clearly a need for big data, but only a few places where big visual data is available. Today we'll take a look at one of the most popular sources of big visual data, peek inside a trained neural network, and ask ourselves some data/model ownership questions. The fundamental question to keep in mind is the following, "Are the learned weights of a neural network derivate works of the input images?" In other words, when deep learning touches your data, who owns what?

Background: The Deep Learning "Computer Vision Recipe"
One of today's most successful machine learning techniques is called Deep Learning. The broad interest in Deep Learning is backed by some remarkable results on real-world data interpretation tasks dealing with speech[1], text[2], and images[3]. Deep learning and object recognition techniques have been pioneered by academia (University of Toronto, NYU, Stanford, Berkeley, MIT, CMU, etc), picked up by industry (Google, Facebook, Snapchat, etc), and are now fueling a new generation of startups ready to bring visual intelligence to the masses (,,, etc). And while it's still not clear where Artificial Intelligence is going, Deep Learning will be a key player.

Related blog postDeep Learning vs Machine Learning vs Pattern Recognition
Related blog postDeep Learning vs Probabilistic Graphical Models vs Logic

For visual object recognition tasks, the most popular models are Convolutional Neural Networks (also known as ConvNets or CNNs). They can be trained end-to-end without manual feature engineering, but this requires a large set of training images (sometimes called big data, or big visual data). These large neural networks start out as a Tabula Rasa (or "blank slate") and the full system is trained in an end-to-end fashion using a heavily optimized implementation of Backpropagation (informally called "backprop"). Backprop is nothing but the chain rule you learned in Calculus 101 and today's deep neural networks are trained in almost the same way they were trained in the 1980s. But today's highly-optimized implementations of backprop are GPU-based and can process orders of magnitude more data than was approachable in the pre-internet pre-cloud pre-GPU golden years of Neural Networks. The output of the deep learning training procedure is a set of learned weights for the different layers defined in the model architecture -- millions of floating point numbers representing what was learned from the images. So what's so interesting about the weights? It's the relationship between the weights and the original big data, that will be under scrutiny today.

"Are weights of a trained network based on ImageNet a derived work, a cesspool of millions of copyright claims? What about networks trained to approximate another ImageNet network?"
[This question was asked on HackerNews by kastnerkyle in the comments of A Revolutionary Technique That Changed Machine Vision.]

In the context of computer vision, this question truly piqued my interest, and as we start seeing robots and AI-powered devices enter our homes I expect much more serious versions of this question to arise in the upcoming decade. Let's see how some of these questions are being addressed in 2015.

1. ImageNet: Non-commercial Big Visual Data

Let's first take a look at the most common data source for Deep Learning systems designed to recognize a large number of different objects, namely ImageNet[4]. ImageNet is the de-facto source of big visual data for computer vision researchers working on large scale object recognition and detection. The dataset debuted in a 2009 CVPR paper by Fei-Fei Li's research group and was put in place to replace both PASCAL datasets (which lacked size and variety) and LabelMe datasets (which lacked standardization). ImageNet grew out of Caltech101 (a 2004 dataset focusing on image categorization, also pioneered by Fei-Fei Li) so personally I still think of ImageNet as something like "Stanford10^N". ImageNet has been a key player in organizing the scale of data that was required to push object recognition to its new frontier, the deep learning phase.

ImageNet has over 15 million images in its database as of May 1st, 2015.

Problem: Lots of extremely large datasets are mined from internet images, but these images often come with their own copyright.  This prevents collecting and selling such images, and from a commercial point of view, when creating such a dataset, some care has to be taken.  For research to keep pushing the state-of-the-art on real-world recognition problems, we have to use standard big datasets (representative of what is found in the real-world internet), foster a strong sense of community centered around sharing results, and maintain the copyrights of the original sources.

Solution: ImageNet decided to publicly provide links to the dataset images so that they can be downloaded without having to be hosted on an University-owned server. The ImageNet website only serves the image thumbnails and provides a copyright infringement clause together with instructions where to file a DMCA takedown notice. The dataset organizers provide the entire dataset only after signing a terms of access, prohibiting commercial use. See the ImageNet clause below (taken on May 5th, 2015).

"ImageNet does not own the copyright of the images. ImageNet only provides thumbnails and URLs of images, in a way similar to what image search engines do. In other words, ImageNet compiles an accurate list of web images for each synset of WordNet. For researchers and educators who wish to use the images for non-commercial research and/or educational purposes, we can provide access through our site under certain conditions and terms."

2. Caffe: Unrestricted Use Deep Learning Models

Now that we have a good idea where to download big visual data and an understanding of the terms that apply, let's take a look at the the other end of the spectrum: the output of the Deep Learning training procedure. We'll take a look at Caffe, one of the most popular Deep Learning libraries, which was engineered to handle ImageNet-like data.  Caffe provides an ecosystem for sharing models (the Model Zoo), and is becoming an indispensable tool for today's computer vision researcher. Caffe is developed at the Berkeley Vision and Learning Center (BVLC) and by community contributors -- it is open source.

Problem: As a project that started at a University, Caffe's goal is to be the de-facto standard for creating, training, and sharing Deep Learning models. The shared models were initially licensed for non-commercial use, but the problem is that a new wave of startups is using these techniques, so there must be a licensing agreement which allows Universities, large companies, and startups to explore the same set of pretrained models.

Solution: The current model licensing for Caffe is unrestricted use. This is really great for a broad range of hackers, scientists, and engineers.  The models used to be shared with a non-commercial clause. Below is the entire model licensing agreement from the Model License section of Caffe (taken on May 5th, 2015).

"The Caffe models bundled by the BVLC are released for unrestricted use. 

These models are trained on data from the ImageNet project and training data includes internet photos that may be subject to copyright. 

Our present understanding as researchers is that there is no restriction placed on the open release of these learned model weights, since none of the original images are distributed in whole or in part. To the extent that the interpretation arises that weights are derivative works of the original copyright holder and they assert such a copyright, UC Berkeley makes no representations as to what use is allowed other than to consider our present release in the spirit of fair use in the academic mission of the university to disseminate knowledge and tools as broadly as possible without restriction." 

3. Dataset generation and training in your home 

Deep Learning learns a summary of the input data, but what happens if a different kind of model memorizes bits and pieces of the training data? And more importantly what if there are things inside the memorized bits which you might not want shared with outsiders?  For this case study, we'll look at, and their real-time computer vision server which is designed to simultaneously create a dataset and learn about an object's appearance. software can be applied to real-time training from videos as well as live webcam streams.

Instead of starting with big visual data collected from internet images (like ImageNet), the training procedure is based on a person waving an object of interest in front of the webcam. The user bootstraps the learning procedure with an initial bounding box, and the algorithm continues learning hands-free. As the algorithm learns, it is stores a partial history of what it previously saw, effectively creating its own dataset on the fly. Because the convolutional neural networks are designed for detection (where an object only occupies a small portion of the image), there is a large amount of background data presented inside the collected dataset. At the end of the training procedure you get both the Caffe-esque bit (the learned weights) and the ImageNet bit (the collected images). So what happens when it's time to share the model?

A user training a cup detector using's real-time detector training interface

Problem: Training in your home means that potentially private and sensitive information is contained inside the backgrounds of the collected images. If you train in your home and make the resulting object model public, think twice about what you're sharing. Sharing can also be problematic if you have trained an object detector from a copyrighted video/images and want to share/sell the resulting model.

Solution: When you save a model to disk, you get both a compiled model and the full model. The compiled model is the full model sans the images (thus much smaller). This allows you to maintain fully editable models on your local computer, and share the compiled model (essentially only the learned weights), without the chance of anybody else peeking into your living room.'s computer vision server called VMX can run both compiled and uncompiled models; however, only uncompiled models can be edited and extended. In addition, provides their vision server as a standalone install, so that all of the training images and computations can reside on your local computer. In brief,'s solution is to allow you to choose whether you want to run the computations in the cloud or locally, and whether you want to distribute full models (with background images) or the compiled models (solely what is required for detection). When it comes to sharing the trained models and/or created datasets, you are free to choose your own licensing agreement.

4. Open Problems for Licensing Memory-based Machine Learning Models

Deep Learning methods aren't the only techniques applicable to object recognition. What if our model was a Nearest-Neighbor classifier using raw RGB pixels? A Nearest Neighbor Classifier is a memory based classifier which memorizes all of the training data -- the model is the training data. It would be contradictory to license the same set of data differently if one day it was viewed as training data and another day as the output of a learning algorithm. I wonder if there is a way to reconcile the kind of restrictive non-commercial licensing behind ImageNet with the unrestricted licensing use strategy of Caffe Deep Learning Models. Is it possible to have one hacker-friendly data/model license agreement to rule them all?


Don't be surprised if neural network upgrades come as part of your future operating system. As we transition from a data economy (sharing images) to a knowledge economy (sharing neural networks), legal/ownership issues will pop up. I hope that the three scenarios I covered today (big visual data, sharing deep learning models, and training in your home) will help you think about the future legal issues that might come up when sharing visual knowledge. When AI starts generating its own art (maybe by re-synthesizing old pictures), legal issues will pop up. And when your competitor starts selling your models and/or data, legal issues will resurface. Don't be surprised if the MIT license vs. GPL license vs. Apache License debate resurges in the context of pre-trained deep learning models. Who knows, maybe AI Law will become the next big thing.

[1] Deep Speech: Accurate Speech Recognition with GPU-Accelerated Deep Learning: NVIDIA dev blog post about Baidu's work on speech recognition using Deep Learning. Andrew Ng is working with Baidu on Deep Learning.

[2] Text Understanding from Scratch: Arxiv paper from Facebook about end-to-end training of text understanding systems using ConvNets. Yann Lecun is working with Facebook on Deep Learning.

[3] ImageNet Classification with Deep Convolutional Neural Networks. Seminal 2012 paper from the Neural Information and Processing Systems (NIPS) conference which showed breakthrough performance from a deep neural network. Paper came out of University of Toronto, but now most of these guys are now at Google.  Geoff Hinton is working with Google on Deep Learning.

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, ImageNet: A Large-Scale Hierarchical Image Database. IEEE Computer Vision and Pattern Recognition (CVPR), 2009.

Jia Deng is now assistant professor at Michigan University and he is growing his research group. If you're interested in starting a PhD in deep learning and vision, check out his call for prospective students. This might be a younger version of Andrew Ng.

Richard Socher is the CTO and Co-Founder of MetaMind, and new startup in the Deep Learning space. They are VC-backed and have plenty of room to grow.

Jia Li is now Head of Research at Snapchat, Inc. I can't say much, but take a look at the recent VentureBeat article: Snapchat is quietly building a research team to do deep learning on images, videos. Jia and I overlapped at Google Research back in 2008.

Fei-Fei Li is currently the Director of the Stanford Artificial Intelligence Lab and the Stanford Vision Lab. See the article on Wired: If we want our machines to think, we need to teach them to see. Yann, you have some competition.

Yangqing Jia created the Caffe project during his PhD at UC Berkeley. He is now a research scientist at Google.

Tomasz Malisiewicz is the Co-Founder of, which focuses on real-time training of vision systems -- something which is missing in today's Deep Learning systems. Come say hi at CVPR.

Friday, April 24, 2015

Making Visual Data a First-Class Citizen

Above all, don't lie to yourself. The man who lies to himself and listens to his own lie comes to a point that he cannot distinguish the truth within him, or around him, and so loses all respect for himself and for others. And having no respect he ceases to love.” ― Fyodor Dostoyevsky, The Brothers Karamazov

City Forensics: Using Visual Elements to Predict Non-Visual City Attributes

To respect the power and beauty of machine learning algorithms, especially when they are applied to the visual world, let's take a look at three recent applications of learning-based "computer vision" to computer graphics. Researchers in computer graphics are known for producing truly captivating illustrations of their results, so this post is going to be very visual. Now is your chance to sit back and let the pictures do the talking.

Can you predict things simply by looking at street-view images?

Let's say you're going to visit an old-friend in a foreign country for the first time. You've never visited this country before and have no idea what kind of city/neighborhood your friend lives in. So you decide to get a sneak peak -- you enter your friend's address into Google Street View.

Most people can look at Google Street View images in a given location and estimate attributes such as "sketchy," "rural," "slum-like," "noisy" for the given neighborhood. TLDR; A person is a pretty good visual recommendation engine.

Can you predict if this looks like a safe location? 
(Screenshot of Street view for Manizales, Colombia on Google Earth)

Can a computer program predict things by looking at images? If so, then these kinds of computer programs could be used to automatically generate semantic map layovers (see the crime prediction overlay from the first figure), help organize fast-growing cities (computer vision meets urban planning?), and ultimately bring about a new generation of match-making "visual recommendation engines" (a whole suite of new startups).

Before I discuss the research paper behind this idea, here are two cool things you could do (in theory) with a non-visual data prediction algorithm. There are plenty of great product ideas in this space -- just be creative.

Startup Idea #1: Avoiding sketchy areas when traveling abroad 
A Personalized location recommendation engine could be used to find locations in a city that I might find interesting (techie coffee shop for entrepreneurs, a park good for frisbee) subject to my constraints (near my current location, in a low-danger area, low traffic).  Below is the kind of place you want to avoid if you're looking for a coffee and a place to open up your laptop to do some work.

Google Street Maps, Morumbi São Paulo: slum housing (image from

Startup Idea #2: Apartment Pricing and Marketing from Images
Visual recommendation engines could be used to predict the best images to represent an apartment for an Airbnb listing.  It would be great if Airbnb had a filter that would let you upload videos of your apartment, and it would predict that set of static images that best depict your apartment to maximize earning potential. I'm sure that Airbnb users would pay extra for this feature if it was available for a small extra charge. The same computer vision prediction idea can be applied to home pricing on Zillow, Craigslist, and anywhere else that pictures of for-sale items are shared.

Google image search result for "Good looking apartment". Can computer vision be used to automatically select pictures that will make your apartment listing successful on Airbnb?

Part I. City Forensics: Using Visual Elements to Predict Non-Visual City Attributes

The Berkeley Computer Graphics Group has been working on predicting non-visual attributes from images, so before I describe their approach, let me discuss how Berkeley's Visual Elements relate to Deep Learning.

Predicting Chicago Thefts from San Francisco data. Predicting Philadelphia Housing Prices from Boston data. From City Forensics paper.

Deep Learning vs Mid-level Patch Discovery (Technical Discussion)
You might think that non-visual data prediction from images (if even possible) will require a deep understanding of the image and thus these approaches must be based on a recent ConvNet deep learning method. Obviously, knowing the locations and categories associated with each object in a scene could benefit any computer vision algorithm.  The problem is that such general purpose CNN recognition systems aren't powerful enough to parse Google Street View images, at least not yet.

Another extreme is to train classifiers on entire images.  This was initially done when researchers were using GIST, but there are just too many nuisance pixels inside a typical image, so it is better to focus your machine learning a subset of the image.  But how do you choose the subset of the image to focus on?

There exist computer vision algorithms that can mine a large dataset of images and automatically extract meaningful, repeatable, and detectable mid-level visual patterns. These methods are not label-based and work really well when there is an underlying theme tying together a collection of images. The set of all Google Street View Images from Paris satisfies this criterion.  Large collections of random images from the internet must be labeled before they can be used to produce the kind of stellar results we all expect out of deep learning. The Berkeley Group uses visual elements automatically mined from images as the core representation.  Mid-level visual patterns are simply chunks of the image which correspond to repeatable configurations -- they sometimes contain entire objects, parts of objects, and popular multiple object configurations. (See Figure below)  The mid-level visual patterns form a visual dictionary which can be used to represent the set of images. Different sets of images (e.g., images from two different US cities) will have different mid-level dictionaries. These dictionaries are similar to "Visual Words" but their creation uses more SVM-like machinery.

The patch mining algorithm is known as mid-level patch discovery. You can think of mid-level patch discovery as a visually intelligent K-means clustering algorithm, but for really really large datasets. Here's a figure from the ECCV 2012 paper which introduced mid-level discriminative patches.

Unsupervised Discovery of Mid-Level Discriminative Patches

Unsupervised Discovery of Mid-Level Discriminative Patches. Saurabh Singh, Abhinav Gupta and Alexei A. Efros. In European Conference on Computer Vision (2012).

I should also point out that non-final layers in a pre-trained CNN could also be used for representing images, without the need to use a descriptor such as HOG. I would expect the performance to improve, so the questions is perhaps: How long until somebody publishes an awesome unsupervised CNN-based patch discovery algorithm? I'm a handful of researchers are already working on it. :-)

Related Blog Post: From feature descriptors to deep learning: 20 years of computer vision
The City Forensics paper from Berkeley tries to map the visual appearance of cities (as obtained from Google Street View Images) to non-visual data like crime statistics, housing prices and population density.  The basic idea is to 1.) mine discriminative patches from images and 2.) train a predictor which can map these visual primitives to non-visual data. While the underlying technique is that of mid-level patch discovery combined with Support Vector Regression (SVR), the result is an attribute-specific distribution over GPS coordinates.  Such a distribution should be appreciated for its own aesthetic value. I personally love custom data overlays.

City Forensics: Using Visual Elements to Predict Non-Visual City AttributesSean Arietta, Alexei A. Efros, Ravi Ramamoorthi, Maneesh Agrawala. In IEEE Transactions on Visualization and Computer Graphics (TVCG), 2014.

Part II. The Selfie 2.0: Computer Vision as a Sidekick

Sometimes you just want the algorithm to be your sidekick. Let's talk about a new and improved method for using vision algorithms and the wisdom of the crowds to select better pictures of your face. While you might think of an improved selfie as a silly application, you do want to look "professional" in your professional photos, sexy in your "selfies" and "friendly" in your family pictures. An algorithm that helps you get the desired picture is an algorithm the whole world can get behind.

Attractiveness versus Time. From MirrorMirror Paper.

The basic idea is to collect a large video of a single person which spans different emotions, times of day, different days, or whatever condition you would like to vary.  Given this video, you can use crowdsourcing to label frames based on a property like attractiveness or seriousness.  Given these labeled frames, you can then train a standard HOG detector and predict one of these attributes on new data. Below if a figure which shows the 10 best shots of the child (lots of smiling and eye contact) and the worst 10 shots (bad lighting, blur, red-eye, no eye contact).

10 good shots, 10 worst shots. From MirrorMirror Paper.

You can also collect a video of yourself as you go through a sequence of different emotions, get people to label frames, and build a system which can predict an attribute such as "seriousness".

Faces ranked from Most serious to least serious. From MirrorMirror Paper.

In this work, labeling was necessary for taking better selfies.  But if half of the world is taking pictures, while the other half is voting pictures up and down (or Tinder-style swiping left and right), then I think the data collection and data labeling effort won't be a big issue in years to come. Nevertheless, this is a cool way of scoring your photos. Regarding consumer applications, this is something that Google, Snapchat, and Facebook will probably integrate into their products very soon.

Mirror Mirror: Crowdsourcing Better Portraits. Jun-Yan Zhu, Aseem Agarwala, Alexei A. Efros, Eli Shechtman and Jue Wang. In ACM Transactions on Graphics (SIGGRAPH Asia), 2014.

Part III. What does it all mean? I'm ready for the cat pictures.

This final section revisits an old, simple, and powerful trick in computer vision and graphics. If you know how to compute the average of a sequence of numbers, then you'll have no problem understanding what an average image (or "mean image") is all about. And if you're read this far, don't worry, the cat picture is coming soon.

Computing average images (or "mean" images) is one of those tricks that I was introduced to very soon after I started working at CMU.  Antonio Torralba, who has always had "a few more visualization tricks" up his sleeve, started computing average images (in the early 2000s) to analyze scenes as well as datasets collected as part of the LabelMe project at MIT. There's really nothing more to the basic idea beyond simply averaging a bunch of pictures.

Teaser Image from AverageExplorer paper.

Usually this kind of averaging is done informally in research, to make some throwaway graphic, or make cool web-ready renderings.  It's great seeing an entire paper dedicated to a system which explores the concept of averaging even further. It took about 15 years of use until somebody was bold enough to write a paper about it. When you perform a little bit of alignment, the mean pictures look really awesome. Check out these cats!

Aligned cat images from the AverageExplorer paper. 
I want one! (Both the algorithm and a Platonic cat)

The AverageExplorer paper extends simple image average with some new tricks which make the operations much more effective. I won't say much about the paper (the link is below), just take at a peek at some of the coolest mean cats I've ever seen (visualized above) or a jaw-dropping way to look at community collected landmark photos (Oxford bridge mean image visualized below).

Aligned bridges from AverageExplorer paper. 
I wish Google would make all of Street View look like this.

Averaging images is a really powerful idea.  Want to know what your magical classifier is tuned to detect?  Compute the top detections and average them.  Soon enough you'll have a good idea of what's going on behind the scenes.


Allow me to mention the mastermind that helped bring most of these vision+graphics+learning applications to life.  There's an inimitable charm present in all of the works of Prof. Alyosha Efros -- a certain aesthetic that is missing from 2015's overly empirical zeitgeist.  He used to be at CMU, but recently moved back to Berkeley.

Being able to summarize several of years worth of research into a single computer generated graphic can go a long way to making your work memorable and inspirational. And maybe our lives don't need that much automation.  Maybe general purpose object recognition is too much? Maybe all we need is a little art? I want to leave you with a YouTube video from a recent 2015 lecture by Professor A.A. Efros titled "Making Visual Data a First-Class Citizen." If you want to hear the story in the master's own words, grab a drink and enjoy the lecture.

"Visual data is the biggest Big Data there is (Cisco projects that it will soon account for over 90% of internet traffic), but currently, the main way we can access it is via associated keywords. I will talk about some efforts towards indexing, retrieving, and mining visual data directly, without the use of keywords." ― A.A. Efros, Making Visual Data a First-Class Citizen

Wednesday, April 08, 2015

Deep Learning vs Probabilistic Graphical Models vs Logic

Today, let's take a look at three paradigms that have shaped the field of Artificial Intelligence in the last 50 years: Logic, Probabilistic Methods, and Deep Learning. The empirical, "data-driven", or big-data / deep-learning ideology triumphs today, but that wasn't always the case. Some of the earliest approaches to AI were based on Logic, and the transition from logic to data-driven methods has been heavily influenced by probabilistic thinking, something we will be investigating in this blog post.

Let's take a look back Logic and Probabilistic Graphical Models and make some predictions on where the field of AI and Machine Learning is likely to go in the near future. We will proceed in chronological order.

Image from Coursera's Probabilistic Graphical Models course

1. Logic and Algorithms (Common-sense "Thinking" Machines)

A lot of early work on Artificial Intelligence was concerned with Logic, Automated Theorem Proving, and manipulating symbols. It should not be a surprise that John McCarthy's seminal 1959 paper on AI had the title "Programs with common sense."

If we peek inside one of most popular AI textbooks, namely "Artificial Intelligence: A Modern Approach," we immediately notice that the beginning of the book is devoted to search, constraint satisfaction problems, first order logic, and planning. The third edition's cover (pictured below) looks like a big chess board (because being good at chess used to be a sign of human intelligence), features a picture of Alan Turing (the father of computing theory) as well as a picture of Aristotle (one of the greatest classical philosophers which had quite a lot to say about intelligence).

The cover of AIMA, the canonical AI text for undergraduate CS students

Unfortunately, logic-based AI brushes the perception problem under the rug, and I've argued quite some time ago that understanding how perception works is really the key to unlocking the secrets of intelligence. Perception is one of those things which is easy for humans and immensely difficult for machines. (To read more see my 2011 blog post, Computer Vision is Artificial Intelligence). Logic is pure and traditional chess-playing bots are very algorithmic and search-y, but the real world is ugly, dirty, and ridden with uncertainty.

I think most contemporary AI researchers agree that Logic-based AI is dead. The kind of world where everything can be perfectly observed, a world with no measurement error, is not the world of robotics and big-data.  We live in the era of machine learning, and numerical techniques triumph over first-order logic.  As of 2015, I pity the fool who prefers Modus Ponens over Gradient Descent.

Logic is great for the classroom and I suspect that once enough perception problems become "essentially solved" that we will see a resurgence in Logic.  And while there will be plenty of open perception problems in the future, there will be scenarios where the community can stop worrying about perception and start revisiting these classical ideas. Perhaps in 2020.

Further reading: Logic and Artificial Intelligence from the Stanford Encyclopedia of Philosophy

2. Probability, Statistics, and Graphical Models ("Measuring" Machines)

Probabilistic methods in Artificial Intelligence came out of the need to deal with uncertainty. The middle part of the Artificial Intelligence a Modern Approach textbook is called "Uncertain Knowledge and Reasoning" and is a great introduction to these methods.  If you're picking up AIMA for the first time, I recommend you start with this section. And if you're a student starting out with AI, do yourself a favor and don't skimp on the math.

Intro to PDFs from Penn State's Probability Theory and Mathematical Statistics course

When most people think about probabilistic methods they think of counting.  In laymen's terms it's fair to think of probabilistic methods as fancy counting methods.  Let's briefly take a look at what used to be the two competing methods for thinking probabilistically.

Frequentist methods are very empirical -- these methods are data-driven and make inferences purely from data.  Bayesian methods are more sophisticated and combine data-driven likelihoods with magical priors.  These priors often come from first principles or "intuitions" and the Bayesian approach is great for combining heuristics with data to make cleverer algorithms -- a nice mix of the rationalist and empiricist world views.

What is perhaps more exciting that then Frequentist vs. Bayesian flamewar, is something known as Probabilistic Graphical Models.  This class of techniques comes from computer science, and even though Machine Learning is now a strong component of a CS and a Statistics degree, the true power of statistics only comes when it is married with computation.

Probabilistic Graphical Models are a marriage of Graph Theory with Probabilistic Methods and they were all the rage among Machine Learning researchers in the mid 2000s. Variational methods, Gibbs Sampling, and Belief Propagation were being pounded into the brains of CMU graduate students when I was in graduate school (2005-2011) and provided us with a superb mental framework for thinking about machine learning problems. I learned most of what I know about Graphical Models from Carlos Guestrin and Jonathan Huang. Carlos Guestrin is now the CEO of GraphLab, Inc (now known as Dato) which is a company that builds large scale products for machine learning on graphs and Jonathan Huang is a senior research scientist at Google.

The video below is a high level overview of GraphLab, but it serves a very nice overview of "graphical thinking" and how it fits into the modern data scientist's tool-belt. Carlos is an excellent lecturer and his presentation is less about the company's product and more about ways for thinking about next generation machine learning systems.

A Computational Introduction to Probabilistic Graphical Models
by GraphLab, Inc CEO Prof. Carlos Guestrin

If you think that deep learning is going to solve all of your machine learning problems, you should really take a look at the above video.  If you're building recommender systems, an analytics platform for healthcare data, designing a new trading algorithm, or building the next generation search engine, Graphical Models are perfect place to start.

Further reading:
Belief Propagation Algorithm Wikipedia Page
An Introduction to Variational Methods for Graphical Models by Michael Jordan et al.
Michael Jordan's webpage (one of the titans of inference and graphical models)

3. Deep Learning and Machine Learning (Data-Driven Machines)

Machine Learning is about learning from examples and today's state-of-the-art recognition techniques require a lot of training data, a deep neural network, and patience. Deep Learning emphasizes the network architecture of today's most successful machine learning approaches.  These methods are based on "deep" multi-layer neural networks with many hidden layers. NOTE: I'd like to emphasize that using deep architectures (as of 2015) is not new.  Just check out the following "deep" architecture from 1998.

LeNet-5 Figure From Yann LeCun's seminal "Gradient-based learning
applied to document recognition" paper.

When you take a look at modern guide about LeNet, it comes with the following disclaimer:

"To run this example on a GPU, you need a good GPU. It needs at least 1GB of GPU RAM. More may be required if your monitor is connected to the GPU.

When the GPU is connected to the monitor, there is a limit of a few seconds for each GPU function call. This is needed as current GPUs can’t be used for the monitor while doing computation. Without this limit, the screen would freeze for too long and make it look as if the computer froze. This example hits this limit with medium-quality GPUs. When the GPU isn’t connected to a monitor, there is no time limit. You can lower the batch size to fix the time out problem."

It really makes me wonder how Yann was able to get anything out of his deep model back in 1998. Perhaps it's not surprising that it took another decade for the rest of us to get the memo.

UPDATE: Yann pointed out (via a Facebook comment) that the ConvNet work dates back to 1989. "It had about 400K connections and took about 3 weeks to train on the USPS dataset (8000 training examples) on a SUN4 machine." -- LeCun

NOTE: At roughly the same time (~1998) two crazy guys in California were trying to cache the entire internet inside the computers in their garage (they started some funny-sounding company which starts with a G). I don't know how they did it, but I guess sometimes to win big you have to do things that don't scale. Eventually the world will catch up.

Further reading:
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognitionProceedings of the IEEE, November 1998.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard and L. D. Jackel: Backpropagation Applied to Handwritten Zip Code Recognition, Neural Computation, 1(4):541-551, Winter 1989

Deep Learning code: Modern LeNet implementation in Theano and docs.


I don't see traditional first-order logic making a comeback anytime soon. And while there is a lot of hype behind deep learning, distributed systems and "graphical thinking" is likely to make a much more profound impact on data science than heavily optimized CNNs. There is no reason why deep learning can't be combined with a GraphLab-style architecture, and some of the new exciting machine learning work in the next decade is likely to be a marriage of these two philosophies.

You can also check out a relevant post from last month:
Deep Learning vs Machine Learning vs Pattern Recognition

Discuss on Hacker News

Saturday, April 04, 2015

Three Fundamental Dimensions for Thinking About Machine Learning Systems

Today, let's set cutting-edge machine learning and computer vision techniques aside. You probably already know that computer vision (or "machine vision") is the branch of computer science / artificial intelligence concerned with recognizing objects like cars, faces, and hand gestures in images. And you also probably know that Machine Learning algorithms are used to drive state-of-the-art computer vision systems. But what's missing is a birds-eye view of how to think about designing new learning-based systems. So instead of focusing on today's trendiest machine learning techniques, let's go all the way back to day 1 and build ourselves a strong foundation for thinking about machine learning and computer vision systems.

Allow me to introduce three fundamental dimensions which you can follow to obtain computer vision masterdom. The first dimension is mathematical, the second is verbal, and the third is intuitive.

On a personal level, most of my daily computer vision activities directly map onto these dimensions. When I'm at a coffee shop, I prefer the mathematical - pen and paper are my weapons of choice. When it's time to get ideas out of my head, there's nothing like a solid founder-founder face-to-face meeting, an occasional MIT visit to brainstorm with my scientist colleagues, or simply rubberducking (rubber duck debugging) with developers. And when it comes to engineering, interacting with a live learning system can help develop the intuition necessary to make a system more powerful, more efficient, and ultimately much more robust.

Mathematical: Learn to love the linear classifier

At the core of machine learning is mathematics, so you shouldn't be surprised that I include mathematical as one of the three fundamental dimensions of thinking about computer vision.

The single most important concept in all of machine learning which you should master is the idea of the classifier. For some of you, classification is a well-understood problem; however, too many students prematurely jump into more complex algorithms line randomized decision forests and multi-layer neural networks, without first grokking the power of the linear classifier. Plenty of data scientists will agree that the linear classifier is the most fundamental machine learning algorithm. In fact, when Peter Norvig, Director of Research at Google, was asked "Which AI field has surpassed your expectations and surprised you the most?" in his 2010 interview, he answered with "machine learning by linear separators." 

The illustration below depicts a linear classifier. In two dimensions, a linear classifier is a line which separates the positive examples from the negative examples.  You should first master the 2D linear classifier, even though in most applications you'll need to explore a higher-dimensional feature space. My personal favorite learning algorithm is the linear support vector machine, or linear SVM. In a SVM, overly-confident data points do not influence the decision boundary. Or put in another way, learning with these confident points is like they aren't even there! This is a very useful property for large-scale learning problems where you can't fit all data into memory. You're going to want to master the linear SVM (and how it relates to Linear Discriminant Analysis, Linear Regression, and Logistic Regression) if you're going to pass one of my whiteboard data-science interviews.

Linear Support Vector Machine from the SVM Wikipedia page

An intimate understanding of the linear classifier is necessary to understand how deep learning systems work.  The neurons inside a multi-layer neural network are little linear classifiers, and while the final decision boundary is non-linear, you should understand the underlying primitives very well. Loosely speaking, you can think of the linear classifier as a simple spring system and a more complex classifiers as a higher-order assembly of springs.

Also, there are going to be scenarios in your life as a data-scientist where a linear classifier should be the first machine learning algorithm you try. So don't be afraid to use some pen and paper, get into that hinge loss, and master the fundamentals.

Further reading: Google's Research Director talks about Machine Learning. Peter Norvig's Reddit AMA on YouTube from 2010.
Further reading: A demo for playing with linear classifiers in the browser. Linear classifier Javascript demo from Stanford's CS231n: Convolutional Neural Networks for Visual Recognition.
Further reading: My blog post: Deep Learning vs Machine Learning vs Pattern Recognition

Verbal: Talk about you vision (and join a community)

As you start acquiring knowledge of machine learning concepts, the best way forward is to speak up. Learn something, then teach a friend. As counterintuitive as it sounds, when it comes down to machine learning mastery, human-human interaction is key. This is why getting a ML-heavy Masters or PhD degree is ultimately the best bet for those adamant about becoming pioneers in the field. Daily conversations are necessary to strengthen your ideas.  See Raphael's "The School of Athens" for a depiction of what I think of as the ideal learning environment.  I'm sure half of those guys were thinking about computer vision.

An ideal ecosystem for collaboration and learning about computer vision

If you're not ready for a full-time graduate-level commitment to the field, consider a.) taking an advanced undergraduate course in vision/learning from your university, b.) a machine learning MOOC, or c.) taking part in a practical and application-focused online community/course focusing on computer vision.

During my 12-year academic stint, I made the observation that talking to your peers about computer vision and machine learning is more important that listening to teachers/supervisors/mentors.  Of course, there's much value in having a great teacher, but don't be surprised if you get 100x more face-to-face time with your friends compared to student-teacher interactions.  So if you take an online course like Coursera's Machine Learning MOOC, make sure to take it with friends.  Pause the video and discuss. Go to dinner and discuss. Write some code and discuss. Rinse, lather, repeat.

Coursera's Machine Learning MOOC taught by Andrew Ng

Another great opportunity is to follow Adrian Rosebrock's blog, where he focuses on python and computer vision applications.  

Further reading: Old blog post: Why your vision lab needs a reading group

Homework assignment: First somebody on the street and teach them about machine learning.

Intuitive: Play with a real-time machine learning system

The third and final dimension is centered around intuition. Intuition is the ability to understand something immediately, without the need for conscious reasoning. The following guidelines are directed towards real-time object detection systems, but can also transfer over to other applications like learning-based attribution models for advertisements, high-frequency trading, as well as numerous tasks in robotics.

To gain some true insights about object detection, you should experience a real-time object detection system.  There's something unique about seeing a machine learning system run in real-time, right in front of you.  And when you get to control the input to the system, such as when using a webcam, you can learn a lot about how the algorithms work.  For example, seeing the classification score go down as you occlude the object of interest, and seeing the detection box go away when the object goes out of view is fundamental to building intuition about what works and what elements of a system need to improve.

I see countless students tweaking an algorithm, applying it to a static large-scale dataset, and then waiting for the precision-recall curve to be generated. I understand that this is the hard and scientific way of doing things, but unless you've already spent a few years making friends with every pixel, you're unlikely to make a lasting contribution this way. And it's not very exciting -- you'll probably fall asleep at your desk.

Using a real-time feedback loop (see illustration below), you can learn about the patterns which are intrinsically difficult to classify, as well what environmental variations (lights, clutter, motion) affect your system the most.  This is something which really cannot be done with a static dataset.  So go ahead, mine some intuition and play.
Visual Debugging: Designing the real-time gesture-based controller in Fall 2013

Visual feedback is where our work at truly stands out. Take a look at the following video, where we show a live example of training and playing with a detector based on's VMX object recognition system.

NOTE: There a handful of other image recognition systems out there which you can turn into real-time vision systems, but be warned that optimization for real-time applications requires some non-trivial software engineering experience.  We've put a lot of care into our system so that the detection scores are analogous to a linear SVM scoring strategy. Making the output of a non-trivial learning algorithm backwards-compatible with a linear SVM isn't always easy, but in my opinion, well-worth the effort.

Extra Credit: See comments below for some free VMX by beta software licenses so you can train some detectors using our visual feedback interface and gain your own machine vision intuition.


The three dimensions, namely mathematical, verbal, and intuitive provide different ways for advancing your knowledge of machine learning and computer vision systems.  So remember to love the linear classifier, talk to your friends, and use a real-time feedback loop when designing your machine learning system.

Thursday, March 26, 2015

Venture Pitch Contest at CVPR 2015 in Boston, MA

This year's CVPR will be in Boston, and as always, I expect it to be the single best venue to meet computer vision experts and see cutting edge research. I expect Google and Facebook to show off their best Deep Learning systems, NVIDIA to demo their newest GPUs, and dozens of computer vision startups to be looking for talent to grow their teams.

I expect the entrepreneur/academic ratio to be much higher, as it is getting easier for PhD students and postdocs to start their own companies.  This year's CVPR will even feature a Venture Pitch Contest as part of the Fourth Annual Vision Industry and Entrepreneur (VIEW) Workshop at CVPR. From the VIEW workshop webpage:

Computer vision as a technology is penetrating the industry at an extraordinary pace with many computer vision applications directly becoming consumer commodities. Both startups and big companies have contributed to this trend. At the fourth annual Vision Industry and Entrepreneur Workshop, we are organizing a first of its kind Startup Pitch Contest. As a computer vision innovator, this is your chance to present the next great computer vision product idea to a distinguished panel of judges which will include Venture Capitalists, Investors and leading Researchers in the field.
Applications should employ novel computer vision technologies towards an innovative product. The best submissions would be selected for an Elevator Pitch presentation in front of the judges. Prizes would be awarded to the winners who would be announced at the end of the workshop. The details about the judging criteria will be posted on the website.
The submission is broken into two phases – Preliminary submission consisting of a title and an abstract, and, Final submission consisting of a one page summary with technology overview, feasibility, outreach (customers and market size) and monetization (business model). The summary should be tailored at soliciting funding from sources such as venture capital to invest in the idea. The applicants should indicate whether they are academic researchers or industry professionals. Only non-confidential material may be submitted.

Even if you're not ready to pitch, you can submit a poster or demo to the Industry Session part of the VIEW 2015 Workshop. Great place to show off your new computer vision-powered app.  One of the organizers, Samson Timoner, told me the deadlines for submission have been extended. Here are the new dates:

Submission: April 3, 2015 (extended)
Notification: April 8, 2015 (extended)
Workshop: June 11, 2015

This year's CVPR is going to be a great place to network with startups, share ideas, see cutting-edge research and (NEW in 2015) meet folks from the venture capital world. Who knows, if I'm there, I might be wearing a T-shirt.

Mobileye's quest to put Deep Learning inside every new car

In Amnon Shashua's vision of the future, every car can see.  He's convinced that the key technology behind the imminent driving revolution is going to be computer vision, and to experience this technology, we won't have to wait for fully autonomous cars to become mainstream.  I had the chance to hear Shashua's vision of the future this past Monday, and from what I'm about to tell you, it looks like there's going to be a whole lot of Deep Learning inside tomorrow's carCars equipped with Deep Learning-based pedestrian avoidance systems (See Figure 1) can sense people and dangerous situations while you're behind the wheel. From winning large-scale object recognition competitions like ImageNet, to heavy internal use by Google, Deep Learning is now at the foundation of many hi-tech startups and giants. And when it comes to cars, Deep Learning promises to give us both safer roads and the highly-anticipated hands-free driving experience. 

Mobileye's Deep Learning-based Pedestrian Detector

Mobileye Co-founder Amnon Shashua shares his vision during an invited lecture at MIT
Amnon Shashua is the Co-founder & CTO of Mobileye and this past Monday (March 23, 2015) he gave a compelling talk at MIT’s Brains, Minds & Machines Seminar Series titled “Computer Vision that is Changing Our Lives”. Shashua discussed Mobileye’s Deep Learning chips, robots, autonomous driving, as well as introduced his most recent project, a wearable computer vision unit called OrCam

Fig 2. Prof Amnon Shashua, CTO of Mobileye

Let's take a deeper look at the man behind Mobileye and his vision. Below is my summary of Shashua's talk as well as some personal insights regarding Mobileye's embedded computer vision technology and how it relates to cloud-based computer vision.

Mobileye's academic roots
You might have heard stories of bold entrepreneurs dropping out of college to form million dollar startups, but this isn't one of them.  This is the story of a professor who turned his ideas into a publicly traded company, Mobileye (NYSE:MBLY). Amnon Shashua is a Professor at Hebrew University, and his lifetime achievements suggest that for high-tech entrepreneurship, it is pretty cool to stay in school. And while Shashua and I never overlapped academically (he is 23 years older than me), both of us spent some time at MIT as postdoctoral researchers.

Deep Learning's impact on Mobileye
During his presentation at MIT, Amnon Shashua showcased a wide array of of computer vision problems that are currently being solved by Mobileye real-time computer vision systems. These systems are image-based and do not require expensive 3D sensors such as the ones commonly found on top of self-driving cars.  He showed videos of real-time lane detection, pedestrian detection, animal detection, and road surface detection. I have seen many similar visualizations during my academic career; however, Shashua emphasized that deep learning is now used to power most of Mobileye's computer vision systems

Question: I genuinely wonder how much the shift to Deep methods improved Mobileye's algorithms, or if the move is a strategic technology upgrade to stay relevant in the era where Google and and competition is feverishly pouncing on the landscape of deep learning. There's a lot of competition on the hardware front, and it seems like the chase for ASIC-like Deep Learning Miners/Trainers is on.

The AlexNet CNN diagram from the popular Krizhevsky/Sutskever/Hinton paper. Shashua explicitly mentioned the AlexNet model during his MIT talk, and it appears that Mobileye has done their Deep Learning homework.

The early Mobileye: Mobileye didn’t wait for the deep learning revolution to happen. They started shipping computer vision technology for vehicles using traditional techniques more than a decade ago. In fact, I attended a Mobileye presentation at CMU almost a full decade ago -- it was given by Andras Ferencz at the 2005 CMU VASC Seminar.  This week's talk by Shashua suggests that Mobileye was able to successfully modernize their algorithms to use deep learning.

Further reading: To learn about object recognition methods in computer vision which were popular before Deep Learning, see my January blog post, titled From feature descriptors to deep learning: 20 years of computer vision.

Fig 3. "Deep Learning at Mobileye" presentation at the 2015 Deutsche Bank Global 
Auto Industry Conference.

Mobileye's custom Computer Vision hardware
Mobileye is not a software computer vision company -- they bake their algorithms into custom computer vision chips. Shashua reported some impressive computation speeds on what appears to be tiny vision chips. Their custom hardware is more specific than GPUs (which are quite common for deep learning, scientific computations, computer graphics, and actually affordable). But Mobileye chips do not need to perform the computationally expensive big-data training stage onboard, so their devices can be much leaner than GPUs. Mobileye has lots of hardware experience, and regarding machine learning, Shashua mentioned that Mobileye has more vehicle-related training data than they know what to do with.  

Fig 4. The Mobileye Q2 lane detection chip.

Embedded vs. Cloud-based computer vision
While Mobileye makes a strong case for embedded computer vision, there are many scenarios today where the alternative cloud-based computer vision approach triumphs.  Cloud-based computer vision is about delivering powerful algorithms as a service, over the web.  In a cloud-based architecture, the algorithms live in a data center and applications talk to the vision backend via an API layer.  And while certain mission-critical applications cannot have a cloud-component (e.g., a drones flying over the desert), cloud-based vision system promise to turn laptops and smartphones into smart devices, without the need to bake algorithms into chips. In-home surveillance apps, home-automation apps, exploratory robotics projects, and even scientific research can benefit from cloud-based computer vision.  Most importantly, cloud-based deployment means that startups can innovate faster, and entire products can evolve much faster.

Unlike Mobileye's decade-long journey, I suspect cloud-based computer vision platforms are going to make computer vision development much faster, giving developers a Heroku-like button for visual AI.  Choosing diverse compilation targets such as a custom chip or Javascript will be handled by the computer vision platform, allowing computer vision developers to work smarter and deploy to more devices.

Conclusion and Predictions
Even if you don't believe that today's computer vision-based safety features make cars smart enough to call them robots, driving tomorrow's car is sure going to feel different.  I will leave you with one final note: Mobileye's CTO hinted that if you are going to design a car in 2015 on top of computer vision tech, you might reconsider traditional safety features such as airbags, and create a leaner, less-expensive AI-enabled vehicle.

Fig 5. Mobileye technology illustration [].

Watch the Mobileye presentation on YouTube: If you are interested in embedded deep learning, autonomous vehicles, or want to get a taste of how the industry veterans compile their deep networks into chips, you can watch the full 38-minute presentation from Amnon's January 2015 Mobileye presentation. 

I hope you learned a little bit about vehicle computer vision systems, embedded Deep Learning, and got a glimpse of the visual intelligence revolution that is happening today. Feel free to comment below, follow me on Twitter (@quantombone), or sign-up to the mailing list if you are a developer interested in taking's cloud-based computer vision platform for a spin.